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Recent studies have indicated several therapeutic applications forδ opioid agonists and antagonists. To
exploit the therapeutic potential ofδ opioids developing a structural basis for the activity of ligands at the
δ opioid receptor is essential. The conformationally sampled pharmacophore (CSP) method (Bernard et al.
J. Am. Chem. Soc.2003, 125, 3103-3107) is extended here to obtain quantitative models ofδ opioid ligand
efficacy and affinity. Quantification is performed via overlap integrals of the conformational space sampled
by ligands with respect to a reference compound. Iterative refinement of the CSP model identified hydrophobic
groups other than the traditional phenylalanine residues as important for efficacy and affinity in DSLET
and ICI 174 864. The obtained models for a structurally diverse set of peptidic and nonpeptidicδ opioid
ligands offer good predictions withR2 values>0.9, and the predicted efficacy for a set of test compounds
was consistent with the experimental values.

Introduction

Treatments of severe and chronic pain often depend on the
use of opioid analgesics, which are generally effective by their
action at theµ opioid receptor.1,2 However, the use ofµ opioids
is accompanied by adverse effects including life threatening
incidents such as respiratory depression3 and constipation.4 In
addition, the development of tolerance and dependence5 com-
plicate the therapeutic use of these drugs. Thus, there is a need
for the development of effective medications that lack serious
side effects. Since the identification of the enkephalins6,7 and
the δ opioid receptors,δ opioid ligands have been pursued as
analgesic agents and numerous studies have investigated the
biological processes involving theδ opioid receptor system. This
has led to the discovery of several potential therapeutic
applications forδ opioid ligands such as the treatment of
substance abuse and immunosuppression, among others.8-10 It
has also been found that co-administration of aδ-antagonist
with a µ-agonist reduces the development of tolerance and
dependence to theµ-agonist,11,12 and a slower development of
tolerance has been observed with the administration of a peptide
with the dual profile ofµ-agonism andδ-antagonism.13 Thus,
efforts are also being made to develop novel analgesics with
this dual profile ofµ-agonism andδ-antagonism.14

The rational design of drugs for a specific target is greatly
aided by structural information of the receptor. However, in
the absence of an experimentally obtained three-dimensional
(3D) structure of the receptor, drug development methods must
rely on information obtainable from known ligands of the
receptor. This is the case with the G-protein coupledδ opioid
receptor15,16 for which no experimental structure is available.
While computational 3D models of theδ opioid receptor have
been developed,17-23 a large number of studies have focused
on developing structure-activity relationships (SAR) based on
the study of knownδ opioid ligands24 via use of both
pharmacophore25-35 and QSAR36-41 models. The former method
typically involves identification of low-energy conformations
of the ligands of interest, followed by structural alignment and

identification of common features that are predictive of biologi-
cal activity. While these studies have advanced our understand-
ing of δ opioid SARs, the information is typically restricted to
a congeneric series of compounds and omit consideration of
conformational changes that may occur upon binding of ligands
to their target receptor.36-41

To overcome the limitations of traditional methods of
pharmacophore development, an approach involving extensive
conformational sampling of ligands followed by the use of all
sampled conformers in the pharmacophore model was devel-
oped.27,28The method, which is referred to as aconformationally
sampled pharmacophore (CSP), was applied to the study of
nonpeptidicδ opioid ligands27 and peptidicδ opioid ligands28

resulting in models distinguishingδ opioid agonists from
antagonists. The inclusion of all sampled conformers of the
ligands in the model accounts for the inherent dynamic nature
of molecules and the nature of their interaction with biomol-
ecules, as molecules at room temperature possess kinetic energy
sampling a variety of conformations other than just the lowest
energy conformation(s).42 More importantly, the favorable
interaction with the receptor may enable a molecule to overcome
the conformational strain associated with assuming a higher
energy conformation, and hence, the bound conformation of a
molecule need not be among the low energy conformers of the
unbound molecule.43 Accordingly the inclusion of all conformers
increases the probability of including the bioactive conformer
in the model. The importance of conformational sampling and
the use of higher energy conformers in addition to the low
energy ones has gained increasing attention,44,45and the utility
of the CSP method is emphasized by its consideration in studies
by workers in the field46-52 including its application for
pharmacophore development of compstatin analogues.53

Here we describe an extension of the CSP method into
quantitative models predicting the efficacy and the affinity of
δ opioid ligands. Subtypes of theδ opioid receptor (i.e.,δ1 and
δ2) have been proposed but are not invoked in the current model,
as their existence remains a matter of debate.10 The overlap in
conformational space, as defined by various combinations of
geometric parameters for different ligands with respect to a
reference ligand, are quantified and then used as parameters
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for the prediction of ligand efficacies and affinities using
multiple regression models. The utility of the approach is shown
in the identification of novel functional groups on selected
peptides that are essential for biological activity and ligand
affinity.

Computational Methods

Conformational sampling of peptidic and nonpeptidicδ opioid
ligands was achieved by utilizing molecular dynamics (MD)
simulations54 using the program CHARMM.55,56 Initially, the δ
opioid ligands (Figure 1 and Table 1) were modeled using Sybyl
6.257 and energy minimized to a gradient of 0.05 kcal/mol‚Å using
the Tripos force field. Each molecule was then subjected to 200
steps of Adopted Basis Newton Raphson minimization in CHARMM
using the Merck Molecular Force Field (MMFF)58,59 prior to MD
simulations. Conformational sampling for the nonpeptidic ligands
(Figure 1) was carried out with 10 ns MD simulations at 300 K,
with snapshots saved every 100 integration time steps for analysis.
Sampling for the peptidic ligands (Table 1) was carried out using
replica exchange MD simulations60 that involved 10 ns simulations
with four replicas between 300 and 400 K using an exponential

scale; 300, 330, 363, and 400 K. For each replica, simulations were
carried out for 100 integration time steps, following which the
coordinates were saved for analysis and an exchange of replicas
was attempted. Conformations from all four replicas were used in
the analysis. For all MD simulations, Langevin dynamics61 were
performed with an integration time step of 0.002 ps, including
SHAKE of all covalent bonds involving hydrogens,62 and aqueous
solvation was treated via the Generalized Born Continuum Solvent
Model.63,64 The physiologically relevant protonation states of the
ligands were used in the study, which in the case of some of the

Figure 1. Nonpeptidicδ opioid ligands used in the development of the quantitative efficacy and affinity models. The pharmacophore groups are
A in green, B in red, and N in blue. Compounds8 and9 were included only for affinity modeling and compounds10-13 were used as external
tests for efficacy prediction.

Table 1. Peptidicδ Opioid Ligands Used in the Development of CSPa

peptide sequence

(14) deltorphin II Tyr -D-Ala-Phe-Glu-Val-Val-GlyNH2

(15) DPDPE Tyr -c[D-Pen-Gly-Phe-D-Pen]
(16) pCl-DPDPE Tyr -c[D-Pen-Gly-Phe(pCl)-D-Pen]
(17) DSLET Tyr -D-Ser-Gly-Phe-Leu-Thr
(18) ICI 174,864 (H2CdCCH2)2-Tyr -Aib-Aib-Phe-Leu

a The pharmacophore points are the protonated nitrogen (N) on Tyr1,
the centroid of the phenolic group (A) on Tyr1 (bold) and the centroid of
the hydrophobic group (B; italic). For17 and 18, the various groups
considered as the hydrophobic moiety are shown in italic.
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nonpeptidic ligands involved multiple configurations of the proton
on the basic nitrogen, as previously performed27.

Angles and distances between the three pharmacophoric points
(Figure 1 and Table 1) were measured for all conformations of the
δ opioid ligands obtained from the MD simulations. Geometric data
from all configurations for the nonpeptidic ligands with multiple
protonation states were combined for analysis. All possible
combinations of distances with angles were then utilized to obtain
2D probability distributions of the pharmacophoric parameters for
each ligand. These probability distributions were obtained with a
bin size of 0.1 Å and 1° for the distances and angles, respectively.
Overlap coefficients (OCsa), for the 2D pharmacophoric parameters
were calculated using eq 1

where P represents the normalized probability at pixelij from the
2D distributions for compoundsk (i.e., the reference compound)
and l.

Overlap coefficients were then utilized as independent variables
in regression analysis with respect to the reported biological activity
and affinity (i.e., the dependent variables, Table S.1, Supporting
Information) using the program Excel. For model development,
compounds1-9 in Figure 1 and14-18 in Table 1, were used as
the training set; compounds10-13 were used as test molecules.
Compounds1 and7 are structurally almost identical, with the only
difference being the methoxy substituent in7 as opposed to the
hydroxyl substituent in1 on the aromatic ring (Figure 1). This
similarity in structure results in very high overlaps in the pharma-
cophoric parameters and preliminary regression analysis indicated
a bias in the models due to7 dominating the regression fits. This
compound was therefore excluded during the initial phase of
development of the quantitative model; however, once preliminary
models were developed7 was reintroduced into the analysis and is
included in the final models. The OC were calculated for all nine
distance-angle pairs for each compound with respect to the reference
compound. Combinations of the different distance-angle OCs for
all compounds were then used in multiple regression analyses to
fit the experimental efficacies for the ligands. From these regression
analysis sets of OC values that yielded the highest correlation
coefficients, (R2 > 0.9), with suitableP-values (<0.05) for the
coefficients were determined and subjected to further analysis.

Results and Discussions

To generate a quantitative CSP model involving the 2D
pharmacophoric parameters, a set ofδ opioid ligands with
efficacies and affinities determined under identical experimental
conditions were selected for the training set.65 The selected data
set involved the binding and G-protein activation by a set of
peptidic and nonpeptidicδ opioid ligands in C6 glioma cell
lines stably transfected with theδ opioid receptor from rat for
efficacy measurements, and the displacement of radiolabeled4
for determination of ligand affinities. Table S.1 of the Supporting
Information presents the list of ligands and the experimental
data extracted from Table 1 of Clarke et al.65 Because the
reported ligand efficacies were obtained based on the maximum
stimulation of [35S]GTP-γS binding with respect to that by the
δ opioid ligand 1, evaluation of the OC pharmacophoric

parameters were carried out using1 as the reference compound.
In addition, the influence of the identity of the reference
compound was studied by individually using7 and 6 as the
reference compounds.

The CSP method is based on relating the regions of
conformational space sampled by the ligands to their biological
activity, with the conformational space defined as the distribu-
tions of the distances and angles between the pharmacophoric
points (Figure 1 and Table 1) obtained from all accessible
conformations of the respective ligands. Shown in Figure 2 are
selected 2D conformational distributions for the nonpeptidic
ligands 1, 4, and 7. As may be seen, the overlap of the
distributions of1 and7 (Figure 2A), both agonists, is high, while
that of 1 and an antagonist4 (Figure 2B) is low. This is the
basis for the qualitative 2D CSP that discriminatesδ opioid
agonists from antagonists.27,28 To extend the approach to a
quantitative method, the extent of overlap of the distributions
between compounds may be obtained using eq 1. In the case
of the distributions shown in Figure 2A,B, the computed OC
values are 0.77 and 0.00, respectively. By obtaining the OC
values for all compounds in a training set with respect to a
reference compound, those values may be regressed against the
biological data, yielding a quantitative model.

Development ofδ Opioid Ligand Efficacy Model. Devel-
opment of the quantitative CSP used the following pharma-
cophore points (Figure 1 and Table 1): the basic nitrogen (N),
and centroids of the aromatic ring (A) and hydrophobic (B)
moieties in theδ opioid ligands (centroid; Figure 3A), as
previously performed.27,28This yields three distances and three
angles, from which nine possible 2D pharmacophore parameters
are obtained. In lieu of the centroids for pharmacophore points
A and B, the atoms that were the maximum distance apart
between the A and B groups were also used to define the
respective pharmacophore points (MaxD; Figure 3B). This was
achieved by computing the maximum (AB) distance between
all nonhydrogen atoms of the aromatic group, A, and of the
hydrophobic group, B, for all saved conformers of a compound
and then selecting the two relevant atoms for the computation

a Abbreviations: OC, overlap coefficient; centroid, pharmacophore
parameters calculated using centroids of groups of atoms; MaxD, pharma-
cophore parameters calculated using maximum distance between groups
of atoms; centroid), pharmacophore parameters calculated using centroids
of groups of atoms with equal weighting of all conformers; MaxD),
pharmacophore parameters calculated using maximum distance between
groups of atoms with equal weighting of all conformers.

Figure 2. 2D probability distributions and calculated OC for (A)1
(red) and7 (green) and (B)1 (red) and4 (blue).

Figure 3. Examples of centroid and maximum distance based
calculations of pharmacophoric parameters shown for4. The pharma-
cophore groups are A in green, B in red, and N in blue. The lines in
magenta indicate the type of measurement: (A) centroid and (B)
maximum A-B distance (MaxD).
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of the remaining distances, AN and BN, and angles ANB, NAB,
and NBA, (Figure 3B). Additionally, in the calculation of the
OC values, overlaps were also measured by equal weighting
(centroid) or MaxD)) of all points in conformational space.
This was performed by using a binary measure of occupancy
for the summation of points occupied by a compound and the
reference compound (i.e., 1 if sampled, 0 if never sampled),
normalized by the total number of points occupied. Development
of the quantitative efficacy model involved compounds1-7
and 14-18. The appropriate definition of the B group inδ
opioid ligands with multiple hydrophobic residues or groups,
such as17 and18, were obtained as a result of refinement of
the predictive models as discussed below, with the successive
inclusion of these ligands in the quantitative model. Initially,
17 was included in model development with Phe as the
hydrophobic B group. Further refinement of the model involved
consideration of the Leu residue in17 as the B group followed
by inclusion of18 in the training set, where the N-terminal allyl
substituents were also considered as the B group. The OC values
for the nine 2D pharmacophoric parameters used in the initial
model for the various ligands are presented in Tables S.2 and
S.3 of the Supporting Information. In the majority of cases, finite
OC values are obtained; however, with some agonists, such as
2, 3, 5, and 17 and the antagonist4, zero OC values were
obtained.

The nine 2D OC parameters based on the different definitions
of the pharmacophore points, centroid and MaxD, with and
without equal weighting of conformers, were then used in
multiple regression analysis with respect to the efficacy data.
Initial analysis selected those models with highR2 values (Table
S.4 Supporting Information), showing the best models to include
pharmacophoric parameters based on equal weighting of all
conformers for both the centroid (centroid)) and maximum A
to B distance (MaxD)) measurements. Further evaluation of
these models was performed usingP-values to estimate the
significance of the individual OC parameters in these models
(Table S.5, Supporting Information). It was seen that the
centroid) combination of the NA-NBA and BN-NAB 2D
pharmacophoric parameters resulted in aR2 value of 0.898 with
P-values<0.05 for both OC parameters. However,2 and 5,
which have low but significant experimental activity (Table S.1),
show no overlap in either of these parameters with respect to1
(Table S.2ii), suggesting that these parameters may not be
indicative of the requirements for activity at theδ opioid
receptor. Alternatively, the AB-NBA + NA-NBA MaxD)
combination gives anR2 value of 0.936 withP-values<0.001
for both parameters (Table S.5ii). However, detailed analysis
of the selected OC parameters revealed that for the highly active
δ opioid ligand17, both of the selected OC parameters were
zero with respect to1 (Table S.3ii). While this may indicate
limitations in the model, with17 there is a second functional
group on the peptide that may act as the hydrophobic B group,
leucine, rather than the phenylalanine side chain that is
traditionally accepted as the hydrophobic group. Thus, this group
was tested as the hydrophobic B group, with the resultant OC
values giving reasonable overlaps for all nine parameters (Table
S.6, Supporting Information).

The recalculated OC values for17were utilized in additional
regression analysis (Table S.7, Supporting Information). The
best correlations were seen with the parameters obtained using
the maximum A to B distance (MaxD), with probability based
OC values givingR2 values>0.92 and with the AB-NBA and
NA-NBA MaxD distance angle combination yielding the best
R2. Importantly, AB-NBA and NA-NBA MaxD combination

had significant coefficients (p < 0.05) supporting the validity
of the model (Table 2). Thus, the application of the quantitative
2D CSP method predicts that the hydrophobic moiety respon-
sible for δ activity in 17 is the side chain of the Leu moiety
rather than the traditional Phe side chain.

Detailed analysis of the AB-NBA and NA-NBA MaxD
based model is presented in Table 2. In accord with the high
R2, 0.978, and significantP values, the model nicely predicts
the activity of all the compounds in the training set. Examination
of the 2D parameters AB-NBA and NA-NBA shows that all
compounds have overlap with reference1 for the AB-NBA
distance angle parameter. On the other hand, the low efficacy
compounds,2 and5, and the antagonist4 have no overlap for
the NA-NBA parameter. It is also seen that the AB-NBA
parameter is most directly correlated with the efficacies with
compounds having higher overlaps being more active, indicating
that the structural features associated with this parameter are
probably the most significant determinants ofδ opioid activity.
Notable is the ability of the model to predict the difference
between the peptidic ligands15and16. These ligands only differ
by the presence of the chlorine atom on Phe3 suggesting that
the present approach is capable of predicting changes in activity
associated with subtle structural changes in a ligand. The ligand
for which the model makes the poorest prediction is4, which
is a full antagonist (i.e., no discernible biological activity in
the applied experimental assay), although the model predicts it
to have a low, but nonzero efficacy. The structural similarity
between4 and5 (Figure 1) results in almost identical OC values
for the two compounds and seems to be the cause for the
predicted activity for4. However,N-cyclopropylmethyl sub-
stituents as in4 tend to give lower opioid efficacy thanN-methyl
substituents,8 an effect not accounted for in the present model;
future models will incorporate this substituent to further fine-
tune the model.

Structurally, both distance AB and angle NBA involve the
hydrophobic pharmacophoric moiety, B, indicating the relevance
of this group forδ opioid activity. The fact that the maximum
distance based criterion is the best predictor of the ligand
efficacies also indicates that the spatial extent of the B group
influences the activity, as does its orientation with respect to
the other pharmacophoric groups. This is consistent with
previous observations by us27,28 and others.35,66,67In addition,
it was seen that for the two parameter combinations of AB-
NBA with the remaining 2D parameters involving either the

Table 2. Model Properties, Selected Pharmacophore Parameters, and a
Comparison of Observed and Predicted Relative Efficacies ofδ Opioid
Ligands with1 as the Reference Moleculea

model
R2 ) 0.978 Y-intercept AB-NBA NA-NBA

coefficients 0.072 3.375 11.026
P values 0.0431 0.0004 0.0007

biological activity OC values

cmpd experimental predicted AB-NBA NA-NBA

2 0.08 0.1 0.007492 0
3 0.36 0.27 0.057046 0.000529
4 0 0.08 0.000996 0
5 0.12 0.08 0.001019 0
6 0.18 0.22 0.044116 0.000063

14 0.59 0.56 0.074764 0.021763
15 0.59 0.59 0.070327 0.025072
16 0.8 0.8 0.084515 0.040306
17 0.9 0.93 0.180618 0.022434

a Model obtained using multiple regression with the maximum A to B
distance based calculation of OC.
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AB or BN distance with any angle gaveR2 values>0.9, further
indicating the significance of the hydrophobic group, B (Table
S.7, Supporting Information).

Impact of Reference Compound.Compound1 is a full δ
agonist, and because experimental efficacy data were available
with reference to this compound, the initial development of a
quantitative model used it as the reference compound. To test
if the selection of the reference compound would impact the
resulting model, the quantitative 2D CSP was performed using
two alternate compounds as the reference. Compound7 was
selected as it is structurally similar to1. The second,6, was
selected as it is a weak agonist with low efficacy and is also
structurally different from1.

OC values based on7 as the reference differ significantly
from those with respect to1 (data not shown). This difference
is an outcome of using all conformations of the ligands with
the CSP method, which accounts for the inherent dynamics of
molecules, whereby though7 and 1 are almost structurally
identical, the difference in conformations sampled becomes
evident. While this may complicate the refinement of the
pharmacophore, it indicates that the CSP method goes beyond
the biases associated with structural alignment techniques used
typically in pharmacophore development by not limiting the
conformations considered to only those that satisfy predeter-
mined scaffolds.

With 7 as the reference, regression analyses were performed
for various combinations of 2D pharmacophoric parameter OC,
as above, yielding a number of combinations with good
correlation. The best predictions of efficacy withR2 > 0.9 were
seen with the MaxD parameters (Table S.8, Supporting Infor-
mation) similar to that seen with1, and the use of the probability
based weighting again provided better predictions. Several of
these models hadR2 values>0.9, although the best model,
(AB-NBA + NA-NBA, R2 ) 0.946) had a largeP value for
the AB-NBA term. Of the remaining AB-NBA models with
R2 > 0.9 (Table S.8), theP values were all<0.05, indicating
good reliability in the model. Thus, with7 as the reference
compound, predictive models are obtained, with the AB-NBA
parameter being the most relevant for biological activity.
However, the second parameter differed from that of the model
with 1 as the reference, indicating that subtle differences in the
models are obtained with different reference compounds.

With 6 as the reference compound, the OC values were very
different from those using1 (data not shown), as expected due
to the structural differences in the two compounds. On perform-
ing multiple regression analyses, reasonableR2 values (i.e.,
>0.9) were obtained only with combinations involving three
or more 2D pharmacophoric parameters (Table S.9, Supporting
Information). Interestingly,R2 values>0.9 were obtained only
for the MaxD) based parameter, where, unlike for1 or 7 as
reference compounds, equal weighting of the conformers gave
better predictions. Of the top models, the two best withR2 >
0.96, NA-NBA, BN-NAB, NA-ANB and NA-NBA, NA-
NAB, BN-NBA, were also the only two withP values<0.05
for all three parameters.

For the6 based model, the two significant differences with
respect to the models based on1 and7 was the lack of the term
AB-NBA and the use of equal weighting of the MaxD term in
the best models. In the use of all sampled conformations of a
molecule in pharmacophore development, one may expect a
highly active compound to populate regions of conformational
space that are relevant to receptor activation to a greater extent
than a compound with low activity. As a result, for a low-
efficacy reference compound, both the regions of overlap

relevant to activity and the population of those regions may be
much smaller, such that the ability of the compound to sample
that region of conformational space is more relevant rather than
details of the extent and probability of sampling active
conformations. This difference may lead to equal weighting
yielding more predictive models when using a low-efficacy
compound as the reference. Concerning the lack of inclusion
of the AB-NBA term in the best models, this term was included
in one model withR2 > 0.9 (Table S.9), and because the other
best models contain the NA, BN, and various angle terms, the
AB-NBA related information is implicitly in the model. Thus,
the use of a low-efficacy compound as reference does allow
for the development of a predictive model. However, because
of the probable limitations in sampling conformational regions
related to receptor activation in low efficacy compounds, it is
suggested that higher efficacy compounds serve as better
reference compounds.

Inclusion of 18 in the Training Set. As mentioned above,
the peptide antagonist18 possesses multiple hydrophobic
groups, including the Phe and Leu residues and the allyl
substituents on the amino group, which may influence the nature
of the interaction of this peptide with theδ opioid receptor. In
addition, this peptide is different from the other peptidic ligands
in that it has a tertiary amino group that forms one of the
pharmacophoric points, which could also be a cause for the
antagonistic nature of this peptide. Due to the structural
differences in this ligand and the different hydrophobic groups
that could serve as the pharmacophoric B group, it was not
included in the initial training set. As mentioned above, the
assumption of the Phe residue as the hydrophobic group in17
was found to be inconsistent and, therefore, model development
was extended to include18 with Leu5 as well as the allyl
substituents on the N, in addition to Phe4 being considered as
the required hydrophobic B group.

Overlap calculations for each of the possible groups in18
were undertaken with respect to1, with the resulting OC values
reported in Table S.10 of the Supporting Information. The
different B group definitions offered variable degrees of overlap
for the pharmacophoric parameters, with the B1 (Phe4) and B4
(Leu5) definitions providing overlaps for all parameters. The
B2 and B3 (allyl substituents) definitions gave finite overlaps
in only a few parameters, including the AB-NBA and the NA-
NBA parameters and, in some instances, the NA-ANB
parameter. In addition, due to the symmetry of the allyl groups,
they were considered as one group and the OC values were
calculated. Regression analyses were then performed with18
in the training set using each set of pharmacophoric parameters
for the different B group definitions individually. Only in the
case of the MaxD based parameters without equal weighting
were regression models withR2 values>0.9 obtained, (Table
S.11, Supporting Information). This observation is consistent
with the results without18 (see above). Interestingly it was
observed that reasonable fits (R2 > 0.85) could be obtained with
each of the B group definitions for18, although the best models
were obtained with the allylic substituents as the B group. Once
again, all models withR2 value>0.9 involved AB-NBA, and
the combination with BN-NBA provided the bestR2 value of
0.95, with acceptableP-values for the regression parameters.
Thus, the quantitative CSP model can be extended to include
18, with the model suggesting that the hydrophobic B moieties
may be the allyl substituents on the tertiary amino group, which
also acts as the essential basic N on the compound.

Inclusion of 7 and 18 in the Final Model.Compound7 is
structurally very similar to the reference compound,1, which
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resulted in very high OC values, such that it dominated the
regression fits during model development, leading to its exclu-
sion from the initial fitting step. With the change in definitions
of the hydrophobic B group for17and the multiple hydrophobic
groups in18and the identification of the MaxD OC parameters
as the best predictor of activity, an attempt was made to extend
the model to include both7 and 18 using 1 as the reference
compound. For these analyses, the hydrophobic groups identified
for 18, namely, Phe4 (B1), the two allylic amino substituents
(B2/3), and Leu5 (B4), were evaluated separately with the use
of the Leu5 residue as the hydrophobic group for17. Regression
analyses were performed iteratively as described above using
combinations of the OC values obtained from the MaxD
parameters yielding multiple combinations withR2 values>0.9
andP values<0.05 for the regression coefficients. In all cases,
the regression constant was found to be insignificant, and hence,
to obtain the final model regression, analyses were performed
once again restricting the intercept to zero. The resulting
combinations, with higherR2 values, obtained using different
B group definitions for18 are shown in Table 3. As seen in the
table, irrespective of the B group used, most of the combinations
giving good correlations are the same, in contrast to the result
seen above in the model that omitted7. While more combina-
tions yielding highR2 values are seen with the Phe4 group (data
not shown) as the hydrophobic moiety, the bestR2 value 0.973
is obtained with the use of either the Leu5 residue or the allylic
substituents as the B group. The two bestR2 models were
compared with the experimentally obtained efficacy values as
shown in Tables 4 and 5 and Figure 4A,B. The bestR2 values
in both cases (B2-3 or B4) are with the AB-ANB + AB-
NBA + BN-NAB combination, and the coefficients for this
model are also very similar, suggesting that either of these
hydrophobic groups could provide the required hydrophobic
interactions with the receptor for18. In the final model, all
combinations involve the AB-NBA parameter, and the best
combination in all three cases includes the BN-NAB parameter
as well, suggesting that the structural features associated with

these two parameters are the most important descriptors for
predictingδ opioid efficacies.

Determination of a Common Bioactive Conformation of
the δ Opioid Ligands. The δ opioid efficacy model includes
the OC of the pharmacophoric parameters AB-ANB, AB-
NBA, and BN-NAB with respect to the reference compound
1. Therefore, utilizing these parameters, the regions common
to all δ opioid ligands (i.e., regions of common intersection or
overlap) in these parameters were identified. As can be seen
from theδ opioid efficacy model, Table 5, the nonpeptides6
and7 and the peptides14, 15, 16, and17have finite OC values
for all three parameters, and in the determination of a common
bioactive conformation, regions common to these ligands as well
as 1 were identified. While multiple conformations were
obtained for each compound, the superimposition of one selected
conformation for each ligand is shown in Figure 5 with1 as
the reference. As can be seen from the superimposition of the
conformers for6 and7, Figure 5A, the pharmacophore points
match very well for7, as expected, with a slight difference in
the orientation of the6 conformer. With regard to the peptidic

Table 3. Statistical Analysis of the Three Best Regression Models for
Different Definitions of the Hydrophobic B Group in18 Obtained with
MaxD Based OC and the Inclusion of7 in the Training Seta

2D pharmacophoric
parameter R2

coefficient
1

coefficient
2

coefficient
3

ICI-B1
AB-NAB + AB-NBA +
BN-NAB

0.945 6.8053
2.36E-05

5.4185
2.95E-06

-11.6207
2.08E-06

AB-NAB + AB-NBA +
BN-ANB

0.944 9.1739
1.26E-05

5.2474
3.74E-06

-13.4950
2.34E-06

AB-ANB + AB-NAB +
AB-NBA

0.939 -8.1779
3.18E-06

3.9389
0.0002

5.2830
4.86E-06

ICI-B2-3
AB-ANB + AB-NBA +
BN-NAB

0.973 -20.4463
1.35E-06

5.0678
3.32E-07

17.0941
9.52E-06

AB-ANB + AB-NAB +
AB-NBA

0.963 -8.2981
4.43E-07

4.0780
3.51E-05

5.2779
7.46E-07

AB-ANB + AB-NBA +
BN-ANB

0.957 -14.4864
4.53E-06

5.2995
1.34E-06

10.3428
6.78E-05

ICI-B4
AB-ANB + AB-NBA +
BN-NAB

0.973 -20.4520
1.43E-06

5.0703
3.49E-07

17.0959
1E-05

AB-ANB + AB-NAB +
AB-NBA

0.961 -8.2618
5.25E-07

4.0408
4.2E-05

5.2812
8.86E-07

AB-NBA + BN-NBA +
NA-NBA

0.960 3.3760
0.0007

-21.5598
8.57E-05

17.4879
0.0006

a Multiple regression was performed without a constant. The values for
the regression coefficients and the correspondingP values are listed for
the different 2D pharmacophoric parameter OC combinations.

Table 4. Model Properties, Selected Pharmacophore Parameters, and a
Comparison of Observed and Predicted Relative Affinities ofδ Opioid
Ligands with1 as the Reference Moleculea

model
R2 ) 0.973 AB-ANB AB-NBA BN-NAB

coefficients -20.4463 5.0678 17.0941
P values 1.35E-06 3.32E-07 9.52E-06

biological activity OC values

cmpd exp. pred. AB-ANB AB-NBA BN-NAB

2 0.08 0.04 0 0.007 492 0
3 0.36 0.29 0 0.057 046 0.000 019
4 0 0.01 0 0.000 996 0.000 008
5 0.12 0.01 0 0.001 019 0.000 008
6 0.18 0.22 0.001 138 0.044 116 0.001 433
7 1.02 1.02 0.877 801 0.906 859 0.840 738

14 0.59 0.63 0.008 131 0.074 764 0.024 471
15 0.59 0.48 0.001 921 0.070 327 0.009 454
16 0.8 0.80 0.064 178 0.084 515 0.098 641
17 0.9 0.94 0.000 554 0.180 618 0.002 153
18 0 0.01 0 0.002 26 0

a Model obtained using multiple regression without a constant. Com-
pounds7 and18 were included in the training set with both of the allylic
amino substituents (B2/B3) in18 as the pharmacophoric B group.

Table 5. Model Properties, Selected Pharmacophore Parameters, and a
Comparison of Observed and Predicted Relative Efficacies ofδ Opioid
Ligands with1 as the Reference Moleculea

model
R2 ) 0.973 AB-ANB AB-NBA BN-NAB

coefficients -20.4520 5.0703 17.0959
P values 1.43E-06 3.49E-07 1E-05

biological activity OC values

cmpd exp. pred. AB-ANB AB-NBA BN-NAB

2 0.08 0.04 0 0.007 492 0
3 0.36 0.29 0 0.057 046 0.000 019
4 0 0.01 0 0.000 996 0.000 008
5 0.12 0.01 0 0.001 019 0.000 008
6 0.18 0.22 0.001 138 0.044 116 0.001 433
7 1.02 1.02 0.877 801 0.906 859 0.840 738

14 0.59 0.63 0.008 131 0.074 764 0.024 471
15 0.59 0.48 0.001 921 0.070 327 0.009 454
16 0.8 0.80 0.064 178 0.084 515 0.098 641
17 0.9 0.94 0.000 554 0.180 618 0.002 153
18 0 0.03 0.041 485 0.039 248 0.039 496

a Model obtained using multiple regression without a constant. Com-
pounds7 and18were included in the training set, with the Leu5 (B4) residue
in 18 as the pharmacophoric B group.
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ligands, Figure 5B, the pharmacophore points superimpose quite
well, with the same conformer of1. Importantly, in the common
conformations, these pharmacophore points are all exposed to
the environment, consistent with an essential role in interacting
with the receptor. However, there appears to be no significant
trend in the orientation of the other residues in these peptides.
Thus, the application of the CSP method permits the identifica-
tion of conformations that satisfy pharmacophoric criteria,
suggesting probable bioactive forms of theδ opioid ligands. In
addition, the presence of both peptide and nonpeptide conform-
ers that satisfy the same pharmacophoric criterion may indicate
similar modes of receptor activation for peptides and nonpep-
tides.

Development of δ Opioid Ligand Affinity Model. The
utility of the quantitative CSP method in the development of a
model describingδ opioid ligand affinities was evaluated by

using the experimentally obtainedKi values based on the
displacement of radiolabeled4,65 which was therefore also used
as the reference for this analysis. This evaluation involved the
study of the high efficacyδ agonists (1, 3, 7, and14-18) as
one class and the partial agonists (2, 5, and6) and antagonists
(8, 9, and 18) as a second class (Table S1 of Supporting
Information). Efforts to develop a unified affinity model for
both high and low efficacy ligands were unsuccessful (data not
shown). OC pharmacophoric parameters were calculated with
respect to4, as it has the highest affinity for theδ receptor in
the dataset as well as being the ligand used in the displacement
assay. All possible definitions of the pharmacophoric B group
for 17and18were utilized for the modeling of ligand affinities.
Regression analyses were performed using the OC values as
the independent variables (Tables S.12 and S.13, Supporting
Information) and the log of theKi values as the dependent
variable. Obtained regression models withR2 >0.9 were then
examined for the significance of the determined regression
parameters withP values<0.05.

For the high efficacyδ agonists it was observed that the
MaxD parameters based on the pharmacophore groups A and
B provide models with good predictability of the ligand
affinities. As mentioned above, for17 the two definitions of
the pharmacophoric B group, Phe4 and Leu5 were explicitly
evaluated; with Phe4 while satisfactoryR2 values were obtained,
the binding affinity for 17 was always overestimated andP
values<0.05 were not obtained, indicating this group to be
inappropriate for the prediction of affinity, consistent with the
efficacy models presented above. Table 6 and Figure 4C present
the optimal model for the prediction of affinities of the high
efficacy ligands. The highR2 of 0.987 and lowP values support
the validity of the model, and all predicted activities are within
the reported 95% confidence limits, except for3, for which the
binding affinity is underestimated, and14, for which it is
overestimated. The model based on the MaxD definition

Figure 4. Quantitative conformationally sampledδ opioid pharmacophore (CSP) models. (A) Efficacy model based on the MaxD parameter with
the Leu5 residue in17 and the allylic amino substituent in18 as the pharmacophoric B group (see Table 4 for original data). (B) Efficacy model
based on the MaxD parameter with the Leu5 residue in17 and the Leu5 residue in18 as the pharmacophoric B group (see Table 5 for original data).
(C) Affinity model for high efficacyδ opioid ligands with the Leu5 residue in17 as the pharmacophoric B group (see Table 6 for original data).
(D) Affinity model for low efficacy δ opioid ligands with the allylic amino substituent in18 as the pharmacophoric B group (see Table 7 for
original data). Affinity models were developed using the natural logarithms of experimental values.

Figure 5. Superimposition of conformations for (A) nonpeptidic
ligands and (B) peptidic ligands identified based on theδ opioid efficacy
model. The reference compound1 is colored based on atom type in
bond format. The three atoms defining the pharmacophore points (A,
B, and N using MaxD criterion) are shown as spheres. Remaining
structures as wireframe are in the following colors: (A)6 in red and
7 in purple, and (B)14 in yellow, 15 in brown,16 in purple, and17 in
orange.
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includes the OC parameters from the AB-ANB, AB-NBA,
and NA-NAB terms. Notably, the AB-NBA parameter, for
which all ligands have finite OC (Table S.13), and the AB-
ANB parameter, which is important for theδ opioid ligand
efficacy model, both contribute to the best affinity model.
Clearly, the structural features associated with these terms play
essential roles in the interaction of the compounds with theδ
opioid receptor.

Regression analysis was next performed for the low efficacy
δ opioid ligands, with all possible definitions for the hydro-
phobic moiety18 used for model development. Using the Phe4

residue as the hydrophobic B group in18, models with aR2

value >0.9 and P values <0.05 for the coefficients were
obtained with the centroid based parameters and equal weighting
of the conformers (centroid)). However, these models did not
give accurate affinity predictions, with the predicted values being
beyond the 95% reported experimental confidence intervals.
With the use of the Leu5 group as the pharmacophoric group,
no models with significant correlation were identified. On the
other hand, with the use of the allylic substituents, B2 or B3 as
the B group, models withR2 values>0.9 were obtained with
the MaxD based parameters. All models included the AB-NBA
parameter; however, on examining the predicted affinities with
the experimental values for the models with B2 as the B group,
affinities for most of the compounds were outside the 95%
confidence intervals for the experimental value. With the B3
group as the hydrophobic moiety and equal weighting of
conformations (MaxD)), the AB-NAB + AB-NBA + BN-
NAB combination yielded a model with aR2 value of 0.97 and
P values<0.05 for all regression parameters, but in this case,
affinities for 2 and18 were outside the experimental range. As
with the efficacy prediction, the combined use of both allylic
groups in determining the hydrophobic pharmacophore point
was evaluated, and only one model was obtained with aR2 value
>0.9 andP values<0.05 for the regression parameters. This
model involved a combination of the AB-NAB, AB-NBA,
and BN-NAB MaxD) OC values and gave aR2 value of 1,
with P values well below 0.05 (Table 7). A comparison of the
predicted and experimental values (Figure 4D) shows that this

model gives very accurate predictions for all the low efficacy
δ opioid ligand affinities.

The AB-NBA parameter is also seen to be important for
the affinity of the low efficacyδ opioid ligands. In addition,
the BN-NAB parameter that was important in efficacy predic-
tion is important for the affinity of the low efficacy ligands.
From the previously published CSP models used for qualitative
analysis ofδ opioid agonists and antagonists27,28it was observed
that 2D combinations of the BN distance with the angle
parameters showed the best discrimination, and the inclusion
of the BN-NAB parameter in both the efficacy model and the
model for the affinities of low efficacy ligand suggest that this
parameter may differentiate between the high and the low
efficacyδ ligands. The importance of the hydrophobic B group
in δ opioid ligands is thus observed for both efficacy and affinity
models, including its contribution to the AB and BN distances,
with the latter consistent with previous conclusions based on
the qualitativeδ opioid CSP models.27,28

Prediction of Efficacy for Test Compounds. To more
rigorously test the final efficacy model, it was used to predict
the activity of four test compounds (Figure 1) obtained from
literature with reported experimental results.68-70 Compounds
10, 11, and12 were selected as the effective agonists that are
structurally similar to the reference compound,1, while 13was
selected as it has a structure that differs from those included in
the training set as well a being a low efficacy ligand. Applying
the same simulation protocol as used for the other compounds
and defining the pharmacophore groups as shown in Figure 1,
the efficacy for each ligand was obtained using the developed

Table 6. Model Properties, Selected Pharmacophore Parameters, and a
Comparison of Observed and Predicted Affinities of High-Efficacyδ
Opioid Agonists with4 as the Reference Moleculea

model
R2 ) 0.987 Y-intercept AB-ANB AB-NBA NA-NAB

coefficients 4.0162 23.8041 18.9059 -51.6319
P values 0.0005 0.0065 0.0313 0.0016

binding affinity OC values

cmpd exp. pred. AB-ANB AB-NBA NA-NAB

1 0.45
(0.38-0.54)

0.48 0 0.000 996 0.092 267

3 40
(36-44)

56 0 0.000 001 0

7 60
(45-80)

54 0 0.000 165 0.000 632

14 81
(65-99)

52 0.093 061 0.032 653 0.056 057

15 487
(447-531)

510 0.080 481 0.090 259 0.027 86

16 135
(105-174)

168 0.170 757 0.081 941 0.087 233

17 93
(80-109)

83 0.003 827 0.068 911 0.019 242

a The Leu5 residue (B2) in17 was used as the pharmacophoric B group.
Regression analysis was performed using the natural log of reported
experimental values. Values in parenthesis are the range of experimentally
determined values.

Table 7. Model Properties, Selected Pharmacophore Parameters, and a
Comparison of Observed and Predicted Affinities of Low Efficacyδ
Opioid Ligands with4 as the Reference Moleculea

model
R2 ) 1.000 Y-intercept AB-NAB AB-NBA BN-NAB

coefficients -33.8161 -807.593 99.815 08 737.9552
P values 8.08E-05 8.58E-05 7.37E-05 8.78E-05

binding affinity OC values

cmpd exp. pred. AB-NAB AB-NBA BN-NAB

2 1.6
(1.5-1.8)

1.5 0 0.343 025 0

5 6.5
(6.0-7.1)

6.3 0.901 773 0.910 539 0.912 037

6 8.4
(7.3-9.6)

8.4 0.462 39 0.500 997 0.486 971

8 0.079
(0.069-0.086)

0.079 0.091 803 0.188 357 0.117 38

9 0.037
(0.034-0.042)

0.038 0.894 354 0.908 654 0.897 235

18 37
(29-47)

39 0 0.375 375 0

a Both allylic amino substituents (B2/B3) in18 were used for the
pharmacophoric B group. Regression analysis was performed using the
natural log of reported experimental values. Values in parenthesis are the
range of experimentally determined values.

Table 8. Prediction of Efficacy of Test Compounds Using the CSP
Basedδ Opioid Efficacy Modela

biological activity

cmpd experimental predicted

10b 1.1 2.07
11b 0.96 1.68
12c 0.89 0.49
13d 0.15 0.03

a The reported experimental efficacy values were normalized with respect
to the common reference compound7. b From Wei et al. [6a and 6b].c From
Thomas et al. [(-)-23a ]. d From Burkey et al. [ TAN-67 ].
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δ opioid efficacy model (Table 4), with the resulting predictions
along with the experimental data shown in Table 8. As7 was
common to the three studies from which the test compounds
were selected as well as part of the present study, experimental
values were normalized with respect to7. Analysis of Table 8
shows the predictions to be consistent with the experimental
values. The overall ordering of the activities is in agreement
with experiment, though differences in the absolute values exist.
The predicted efficacies for compounds10 and 11 are much
higher than the experimental values reported, while those for
12 and 13 are underestimated. Compounds10 and 11, as
mentioned, have similar structural features as compound7.
However, an important difference is the presence of an alkene
bond in these compounds that restricts the conformational
flexibility of these molecules, particularly with respect to the
relative orientation of the pharmacophoric point N. This
conformational restraint gives higher overlap values in the BN-
NAB parameter, resulting in an over estimation of the efficacy.
While these results indicate that additional refinement of the
model may be achieved via the inclusion of conformationally
restricted agonists in the training set, differences in experimental
methods may have an impact. For example, the use of
membranes in some studies,68,69 as opposed to the transfected
C6 glioma cell data used in the present work, could contribute
to some of the discrepancy in predicted versus experimental
values. Compounds12and13are predicted to be less efficacious
in comparison to7, which is consistent with the experimental
data. The predicted efficacy of 0.03 for13 agrees well with the
reported efficacy of 0.1570 with respect to7. The extent of
agreement is similar to5, which had a predicted efficacy of
0.01 versus an experimental value of 0.12 (Table 4). Thus, the
developed CSP efficacy model effectively predicts13 to be a
relatively poor agonist, although it appears that the model is
limited in accurately separating low efficacy agonists from full
antagonists, as discussed above. Overall, the quality of the
predictions, while not ideal, indicates the utility of the developed
model as well as the path toward improvements in the model.

Conclusions
The CSP approach includes all sampled conformers of a

ligand in the development of a pharmacophore, thus maximizing
the probability of including the receptor bound conformations
in the model. The application of this method to the study ofδ
opioid ligands, including both nonpeptides and peptides, resulted
in qualitative pharmacophore models capable of distinguishing
δ opioid agonists from antagonists.27,28 The present study
extends the application of the CSP method to allow quantitative
predictions of ligand efficacies and affinities using regression
analyses of overlap coefficients of the 2D pharmacophoric
parameters. An important aspect of the CSP method is that it
does not require conformational alignment of the molecules,
but rather includes all conformers in the analysis, and the
essential pharmacophoric parameters are verified during refine-
ment. This allows for the development of models that span a
diverse range of structures, including both peptidic and non-
peptidic ligands. In addition, the approach appears to be able
to distinguish substituent effects as both the efficacy and the
affinity models are able to distinguish15 from 16, which differ
only by the single chlorine atom. Similarly, with the test
compounds10and11, which differ in just a fluorine substituent,
the relative efficacies68 of these ligands are predicted correctly.
The application of the model for the prediction of the efficacy
of other external compounds12 and13, indicated them to be
weaker agonists compared to7, consistent with experimental
data.69,70

Application of the CSP approach to17 and18 led to the re-
evaluation of the identity of the hydrophobic B group essential
for δ opioid activity. Traditionally, the Phe4 side chain is
considered to be the hydrophobic moiety.24 However, with17,
the side chain of the Leu5 residue yielded better models of both
efficacy and affinity. Similarly, with18, it was seen that groups
other than the Phe4 side chain could serve as the hydrophobic
B group, with the present results indicating that the allylic
substituents on the basic nitrogen in this linear peptide fulfill
that role. It is hoped that the present observation will motivate
the design of novel ligands to test the hypothesis that alternate
hydrophobic groups are substituting for Phe4.

Use of either1 or 7, both high efficacy ligands, as the
reference for calculation of the overlap coefficients indicated
the AB-NBA parameter as the primary predictor ofδ opioid
activity. However, the lower efficacy6 as the reference
compound yielded a model where the NA-NBA parameter had
better correlation withδ opioid ligand efficacies. Use of a lower
activity compound as the reference required a third parameter
to yield a predictive model, apparently due to the lower
population of active conformations sampled by the reference
compound. This is also the probable cause that the OC values
based on equal weighting to all conformational points is required
for efficacy prediction. These observations show that the success
of the quantitative CSP approach is not dependent on the
selected reference compound, but the use of high efficacy or
high affinity compounds is preferable.

The obtained quantitative models (Figure 4), indicating the
importance of the hydrophobic B group, are consistent with the
qualitative observations from previous studies.27,28,35,66,67This
is based on the contribution of terms, including the AB distance
in the best efficacy and affinity models and the importance of
the BN distance in the affinity model of the low efficacy ligands,
suggesting a role of this pharmacophoric parameter in discrimi-
nating low and high efficacy ligands. In addition, it is seen that
the overall dimensions of the molecules are important because
the best predictions of activity and affinity are obtained using
the MaxD based calculation of OC. The development of the
quantitative efficacy model further enabled the determination
of the probable bioactive conformations of theδ opioid ligands,
where both peptide and nonpeptide agonists were found to
satisfy identical pharmacophoric requirements, suggesting simi-
lar binding modes for the two classes of compounds.

While the limited availability of suitable experimental data
does not permit further refinement of the models at present,
this study indicates the applicability of the CSP approach for
pharmacophore development. The present study involves a set
of structurally diverse molecules, including both peptides and
nonpeptides, and does not rely on molecular alignment tech-
niques for determination of pharmacophoric groups. Thus, the
method does not require the use of a rigid reference compound,
and even the use of a structurally flexible ligand as the reference
(i.e.,1) yields models with high predictability ofδ opioid ligand
efficacies and affinities. The quantitative CSP approach is
therefore suggested to be appropriate for general application in
ligand-based drug development methods for structurally diverse
ligands.
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